Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 257
Filtrar
1.
Sci Total Environ ; 928: 172530, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38631644

RESUMO

Elevated atmospheric nitrogen (N) deposition potentially enhances the degree of phosphorus (P) limitation in tropical and subtropical forests. However, it remains elusive that how soil microorganisms deal with the N deposition-enhanced P limitation. We collected soils experienced 9 years of manipulative N input at various rates (0, 40, and 80 kg N ha-1 y-1) in an old-growth subtropical natural forest. We measured soil total and available carbon (C), N and P, microbial biomass C, N and P, enzyme activities involved in C, N and P acquisition, microbial community structure, as well as net N and P mineralization. Additionally, we calculated element use efficiency and evaluated microbial homeostasis index. Our findings revealed that N input increased microbial biomass C:P (MBC:P) and N:P (MBN:P) ratios. The homeostasis indexes of MBC:P and MBN:P were 0.68 and 0.75, respectively, indicating stoichiometric flexibility. Interestingly, MBC:P and MBN:P correlated significantly with the fungi:bacteria ratio (F:B), not with N and P use efficiencies, net N and P mineralization, and enzyme C:P (EEAC:P) and N:P (EEAN:P) ratios. Furthermore, EEAC:P and EEAN:P correlated positively with F:B but did not negatively correlate with the C:P and N:P ratios of available resources and microbial biomass. The effects of N deposition on MBC:P, MBN:P and EEAN:P became insignificant when including F:B as a covariate. These findings suggest that microbes flexibly adapted to the N deposition enhanced P limitation by changing microbial community structure, which not only alter microbial biomass C:N:P stoichiometry, but also the enzyme production strategy. In summary, our research advances our understanding of how soil microorganisms deal with the N deposition-enhanced soil P limitation in subtropical forests.

2.
J Exp Bot ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613495

RESUMO

Knowledge of the physiological mechanisms underlying species vulnerability to drought is critical to better understand patterns of tree mortality. Investigating plant adaptive strategies to drought should thus help to fill this knowledge gap, especially in tropical rainforests exhibiting high functional diversity. In a semi-controlled drought experiment on 12 rainforest tree species, we investigated the diversity in hydraulic strategies and whether they determined the ability of saplings to use stored non-structural carbohydrates during an extreme imposed drought. We further explored the importance of water- and carbon-use strategies in relation to drought-survival through a modelling approach. Hydraulic strategies varied considerably across species with a continuum between dehydration- tolerance and -avoidance. During dehydration leading to hydraulic failure and irrespective of hydraulic strategies, species showed strong declines in whole-plant starch concentrations and a maintenance or even an increase in soluble sugar concentrations potentially favouring osmotic adjustments. Residual water losses mediated the trade-off between time to hydraulic failure and growth, suggesting that it is linked to the 'fast-slow' continuum of plant performances and that dehydration avoidance is an effective drought-survival strategy at the sapling stage. Further investigations on residual water losses may be key to understanding the response of tropical rainforest tree communities to climate change.

3.
Glob Chang Biol ; 30(4): e17274, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38605677

RESUMO

Climate change and other anthropogenic disturbances are increasing liana abundance and biomass in many tropical and subtropical forests. While the effects of living lianas on species diversity, ecosystem carbon, and nutrient dynamics are receiving increasing attention, the role of dead lianas in forest ecosystems has been little studied and is poorly understood. Trees and lianas coexist as the major woody components of forests worldwide, but they have very different ecological strategies, with lianas relying on trees for mechanical support. Consequently, trees and lianas have evolved highly divergent stem, leaf, and root traits. Here we show that this trait divergence is likely to persist after death, into the afterlives of these organs, leading to divergent effects on forest biogeochemistry. We introduce a conceptual framework combining horizontal, vertical, and time dimensions for the effects of liana proliferation and liana tissue decomposition on ecosystem carbon and nutrient cycling. We propose a series of empirical studies comparing traits between lianas and trees to answer questions concerning the influence of trait afterlives on the decomposability of liana and tree organs. Such studies will increase our understanding of the contribution of lianas to terrestrial biogeochemical cycling, and help predict the effects of their increasing abundance.


Assuntos
Ecossistema , Clima Tropical , Florestas , Árvores , Carbono
4.
Glob Chang Biol ; 30(3): e17209, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38469989

RESUMO

Active restoration through silvicultural treatments (enrichment planting, cutting climbers and liberation thinning) is considered an important intervention in logged forests. However, its ability to enhance regeneration is key for long-term recovery of logged forests, which remains poorly understood, particularly for the production and survival of seedlings in subsequent generations. To understand the long-term impacts of logging and restoration we tracked the diversity, survival and traits of seedlings that germinated immediately after a mast fruiting in North Borneo in unlogged and logged forests 30-35 years after logging. We monitored 5119 seedlings from germination for ~1.5 years across a mixed landscape of unlogged forests (ULs), naturally regenerating logged forests (NR) and actively restored logged forests via rehabilitative silvicultural treatments (AR), 15-27 years after restoration. We measured 14 leaf, root and biomass allocation traits on 399 seedlings from 15 species. Soon after fruiting, UL and AR forests had higher seedling densities than NR forest, but survival was the lowest in AR forests in the first 6 months. Community composition differed among forest types; AR and NR forests had lower species richness and lower evenness than UL forests by 5-6 months post-mast but did not differ between them. Differences in community composition altered community-weighted mean trait values across forest types, with higher root biomass allocation in NR relative to UL forest. Traits influenced mortality ~3 months post-mast, with more acquisitive traits and relative aboveground investment favoured in AR forests relative to UL forests. Our findings of reduced seedling survival and diversity suggest long time lags in post-logging recruitment, particularly for some taxa. Active restoration of logged forests recovers initial seedling production, but elevated mortality in AR forests lowers the efficacy of active restoration to enhance recruitment or diversity of seedling communities. This suggests current active restoration practices may fail to overcome barriers to regeneration in logged forests, which may drive long-term changes in future forest plant communities.


A restauração ativa por meio de tratamentos silviculturais (plantio de enriquecimento, corte de trepadeiras e desbaste) é considerada uma intervenção importante em florestas com exploração de madeira. No entanto, sua capacidade de melhorar a regeneração, essencial para a recuperação de longo prazo das florestas exploradas, permanece pouco compreendida, especialmente no que diz respeito à produção e sobrevivência de mudas em gerações subsequentes. Para compreender os impactos de longo prazo da exploração madeireira e da restauração, acompanhamos a diversidade, sobrevivência e características de plântulas que germinaram imediatamente após uma frutificação em massa no norte de Bornéu, em florestas com e sem exploração de madeira, 30-35 anos após o fim da extração. Monitoramos 5119 mudas desde a germinação por aproximadamente 1,5 anos em uma paisagem mista de florestas não exploradas (UL), florestas exploradas em regeneração natural (NR) e florestas exploradas restauradas ativamente por meio de tratamentos silviculturais de reabilitação (AR), 15-27 anos após a restauração. Medimos 14 traços funcionais de folhas, raízes e alocação de biomassa em 399 mudas de 15 espécies. Logo após a frutificação, as florestas UL e AR apresentaram densidades de mudas mais altas do que as florestas NR, mas a sobrevivência foi mais baixa nas florestas AR nos primeiros seis meses. A composição da comunidade diferiu entre os tipos de floresta; as florestas AR e NR teviram menor riqueza de espécies e menor equidade do que as florestas UL 5-6 meses após a frutificação, mas não diferiram entre si. As diferenças na composição da comunidade alteraram os valores de média ponderada pela comunidade das características entre os tipos de floresta com maior alocação de biomassa radicular nas florestas NR em relação às florestas UL. As características influenciaram a mortalidade aproximadamente 3 meses após a frutificação, com traços mais aquisitivos maior investimento em biomassa relativa acima do solo nas florestas AR em relação às florestas UL. Nossas descobertas de redução na sobrevivência e diversidade de plântulas sugerem que há longos retardos no recrutamento após o fim da exploração de madeira, particularmente para alguns táxons. A restauração ativa de florestas exploradas recupera a produção inicial de plântulas, mas a mortalidade elevada nas florestas AR diminui a eficácia da restauração ativa no melhorio do recrutamento e da diversidade das comunidades de mudas. Isso sugere que as práticas atuais de restauração ativa podem não superar as barreiras à regeneração em florestas exploradas, o que pode levar a mudanças de longo prazo nas comunidades florestais no futuro.


Assuntos
Agricultura Florestal , Árvores , Florestas , Plântula , Germinação , Clima Tropical
5.
Plant Biol (Stuttg) ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38477075

RESUMO

There is growing concern about the fate of tropical forests in the face of rising global temperatures. Doughty et al. (2023) suggest that an increase in air temperature beyond ∼4 °C will result in massive death of tropical forest leaves and potentially tree death. However, this prediction relies on assumptions that likely underestimate the heat tolerance of tropical leaves.

6.
Trends Ecol Evol ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38553316

RESUMO

Brazil's main goal is zero deforestation and degradation (ZDD) in the Amazon. Existing policies do not consider the region's heterogeneity. Integrated sectoral policies are necessary for consolidating sustainable subregional territories. To protect the world's largest tropical forest while improving local people's lives, government agencies must overcome funding shortfalls and gaps in coordination.

7.
Am Nat ; 203(4): 445-457, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38489774

RESUMO

AbstractExplaining diversity in tropical forests remains a challenge in community ecology. Theory tells us that species differences can stabilize communities by reducing competition, while species similarities can promote diversity by reducing fitness differences and thus prolonging the time to competitive exclusion. Combined, these processes may lead to clustering of species such that species are niche differentiated across clusters and share a niche within each cluster. Here, we characterize this partial niche differentiation in a tropical forest in Panama by measuring spatial clustering of woody plants and relating these clusters to local soil conditions. We find that species were spatially clustered and the clusters were associated with specific concentrations of soil nutrients, reflecting the existence of nutrient niches. Species were almost twice as likely to recruit in their own nutrient niche. A decision tree algorithm showed that local soil conditions correctly predicted the niche of the trees with up to 85% accuracy. Iron, zinc, phosphorus, manganese, and soil pH were among the best predictors of species clusters.


Assuntos
Florestas , Clima Tropical , Madeira , Ecologia , Panamá , Solo/química
8.
Sci Total Environ ; 921: 170986, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38373450

RESUMO

Soil microbial necromass carbon is an important component of the soil organic carbon (SOC) pool which helps to improve soil fertility and texture. However, the spatial pattern and variation mechanisms of fungal- and bacterial-derived necromass carbon at local scales in tropical rainforests are uncertain. This study showed that microbial necromass carbon and its proportion in SOC in tropical montane rainforest exhibited large spatial variation and significant autocorrelation, with significant high-high and low-low clustering patterns. Microbial necromass carbon accounted for approximately one-third of SOC, and the fungal-derived microbial necromass carbon and its proportion in SOC were, on average, approximately five times greater than those of bacterial-derived necromass. Structural equation models indicated that soil properties (SOC, total nitrogen, total phosphorus) and topographic features (elevation, convexity, and aspect) had significant positive effects on microbial necromass carbon concentrations, but negative effects on its proportions in SOC (especially the carbon:nitrogen ratio). Plant biomass also had significant negative effects on the proportion of microbial necromass carbon in SOC, but was not correlated with its concentration. The different spatial variation mechanisms of microbial necromass carbon and their proportions in SOC are possibly related to a slower accumulation rate of microbial necromass carbon than of plant-derived organic carbon. Geographic spatial correlations can significantly improve the microbial necromass carbon model fit, and low sampling resolution may lead to large uncertainties in estimating soil carbon dynamics at specific sites. Our work will be valuable for understanding microbial necromass carbon variation in tropical forests and soil carbon prediction model construction with microbial participation.


Assuntos
Floresta Úmida , Solo , Solo/química , Carbono , Microbiologia do Solo , Florestas , Nitrogênio/análise
9.
New Phytol ; 242(2): 351-371, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38416367

RESUMO

Tropical forest root characteristics and resource acquisition strategies are underrepresented in vegetation and global models, hampering the prediction of forest-climate feedbacks for these carbon-rich ecosystems. Lowland tropical forests often have globally unique combinations of high taxonomic and functional biodiversity, rainfall seasonality, and strongly weathered infertile soils, giving rise to distinct patterns in root traits and functions compared with higher latitude ecosystems. We provide a roadmap for integrating recent advances in our understanding of tropical forest belowground function into vegetation models, focusing on water and nutrient acquisition. We offer comparisons of recent advances in empirical and model understanding of root characteristics that represent important functional processes in tropical forests. We focus on: (1) fine-root strategies for soil resource exploration, (2) coupling and trade-offs in fine-root water vs nutrient acquisition, and (3) aboveground-belowground linkages in plant resource acquisition and use. We suggest avenues for representing these extremely diverse plant communities in computationally manageable and ecologically meaningful groups in models for linked aboveground-belowground hydro-nutrient functions. Tropical forests are undergoing warming, shifting rainfall regimes, and exacerbation of soil nutrient scarcity caused by elevated atmospheric CO2. The accurate model representation of tropical forest functions is crucial for understanding the interactions of this biome with the climate.


Las características de las raíces de los bosques tropicales y las estrategias de adquisición de recursos están subrepresentadas en modelos de vegetación, lo que dificulta la predicción del efecto de cambio de clima para estos ecosistemas ricos en carbono. Los bosques tropicales a menudo tienen combinaciones únicas a nivel mundial de alta biodiversidad taxonómica y funcional, estacionalidad de precipitación, y suelos infértiles, dando lugar a patrones distintos en los rasgos y funciones de las raíces en comparación con los ecosistemas de latitudes más altas. Integramos los avances recientes en nuestra comprensión de la función subterránea de los bosques tropicales en modelos de vegetación, centrándonos en la adquisición de agua y nutrientes. Ofrecemos comparaciones de avances recientes en la comprensión empírica y de modelos de las características de las raíces que representan procesos funcionales importantes en los bosques tropicales. Nos centramos en: (1) estrategias de raíces finas para adquisición de recursos del suelo, (2) acoplamiento y compensaciones entre adquisición del agua y de nutrientes, y (3) vínculos entre funciones sobre tierra y debajo del superficie en bosques tropicales. Sugerimos vías para representar estas comunidades de plantas extremadamente diversas en grupos computacionalmente manejables y ecológicamente significativos en modelos. Los bosques tropicales se están calentando, tienen cambios en los regímenes de lluvias, y tienen una exacerbación de la escasez de nutrientes del suelo causada por el elevado CO2 atmosférico. La representación precisa de las funciones de los bosques tropicales en modelos es crucial para comprender las interacciones de este bioma con el clima.


Assuntos
Ecossistema , Raízes de Plantas , Nitrogênio , Florestas , Solo , Plantas , Água , Clima Tropical , Árvores
10.
Artigo em Inglês | MEDLINE | ID: mdl-38359077

RESUMO

Three yeast isolate candidates for a novel species were obtained from rotting wood samples collected in Brazil and Colombia. The Brazilian isolate differs from the Colombian isolates by one nucleotide substitution in each of the D1/D2 and small subunit (SSU) sequences. The internal transcribed spacer (ITS) and translation elongation factor 1-α gene sequences of the three isolates were identical. A phylogenetic analysis showed that this novel species belongs to the genus Ogataea. This novel species is phylogenetically related to Candida nanaspora and Candida nitratophila. The novel species differs from C. nanaspora by seven nucleotides and two indels, and by 17 nucleotides and four indels from C. nitratophila in the D1/D2 sequences. The ITS sequences of these three species differ by more than 30 nucleotides. Analyses of the sequences of the SSU and translation elongation factor 1-α gene also showed that these isolates represent a novel species of the genus Ogataea. Different from most Ogataea species, these isolates did not assimilate methanol as the sole carbon source. The name Ogataea nonmethanolica sp. nov. is proposed to accommodate these isolates. The holotype of Ogataea nonmethanolica is CBS 13485T. The MycoBank number is MB 851195.


Assuntos
Fator 1 de Elongação de Peptídeos , Saccharomycetales , Fator 1 de Elongação de Peptídeos/genética , Brasil , Filogenia , Colômbia , DNA Espaçador Ribossômico/genética , Madeira , RNA Ribossômico 16S/genética , DNA Fúngico/genética , Técnicas de Tipagem Micológica , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Ácidos Graxos/química , Saccharomycetales/genética , Nucleotídeos
11.
J Exp Bot ; 75(8): 2545-2557, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38271585

RESUMO

Non-structural carbohydrates (NSCs) are building blocks for biomass and fuel metabolic processes. However, it remains unclear how tropical forests mobilize, export, and transport NSCs to cope with extreme droughts. We combined drought manipulation and ecosystem 13CO2 pulse-labeling in an enclosed rainforest at Biosphere 2, assessed changes in NSCs, and traced newly assimilated carbohydrates in plant species with diverse hydraulic traits and canopy positions. We show that drought caused a depletion of leaf starch reserves and slowed export and transport of newly assimilated carbohydrates below ground. Drought effects were more pronounced in conservative canopy trees with limited supply of new photosynthates and relatively constant water status than in those with continual photosynthetic supply and deteriorated water status. We provide experimental evidence that local utilization, export, and transport of newly assimilated carbon are closely coupled with plant water use in canopy trees. We highlight that these processes are critical for understanding and predicting tree resistance and ecosystem fluxes in tropical forest under drought.


Assuntos
Carbono , Floresta Úmida , Carbono/metabolismo , Ecossistema , Secas , Água/metabolismo , Árvores/metabolismo , Carboidratos , Folhas de Planta/metabolismo
12.
Glob Chang Biol ; 30(1): e17075, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273586

RESUMO

The strength and persistence of the tropical carbon sink hinges on the long-term responses of woody growth to climatic variations and increasing CO2 . However, the sensitivity of tropical woody growth to these environmental changes is poorly understood, leading to large uncertainties in growth predictions. Here, we used tree ring records from a Southeast Asian tropical forest to constrain ED2.2-hydro, a terrestrial biosphere model with explicit vegetation demography. Specifically, we assessed individual-level woody growth responses to historical climate variability and increases in atmospheric CO2 (Ca ). When forced with historical Ca , ED2.2-hydro reproduced the magnitude of increases in intercellular CO2 concentration (a major determinant of photosynthesis) estimated from tree ring carbon isotope records. In contrast, simulated growth trends were considerably larger than those obtained from tree rings, suggesting that woody biomass production efficiency (WBPE = woody biomass production:gross primary productivity) was overestimated by the model. The estimated WBPE decline under increasing Ca based on model-data discrepancy was comparable to or stronger than (depending on tree species and size) the observed WBPE changes from a multi-year mature-forest CO2 fertilization experiment. In addition, we found that ED2.2-hydro generally overestimated climatic sensitivity of woody growth, especially for late-successional plant functional types. The model-data discrepancy in growth sensitivity to climate was likely caused by underestimating WBPE in hot and dry years due to commonly used model assumptions on carbon use efficiency and allocation. To our knowledge, this is the first study to constrain model predictions of individual tree-level growth sensitivity to Ca and climate against tropical tree-ring data. Our results suggest that improving model processes related to WBPE is crucial to obtain better predictions of tropical forest responses to droughts and increasing Ca . More accurate parameterization of WBPE will likely reduce the stimulation of woody growth by Ca rise predicted by biosphere models.


Assuntos
Dióxido de Carbono , Clima Tropical , Madeira , Florestas , Sequestro de Carbono , Biomassa
13.
New Phytol ; 241(3): 1035-1046, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37984822

RESUMO

Climate models predict that everwet western Amazonian forests will face warmer and wetter atmospheric conditions, and increased cloud cover. It remains unclear how these changes will impact plant reproductive performance, such as flowering, which plays a central role in sustaining food webs and forest regeneration. Warmer and wetter nights may cause reduced flower production, via increased dark respiration rates or alteration in the reliability of flowering cue-based processes. Additionally, more persistent cloud cover should reduce the amounts of solar irradiance, which could limit flower production. We tested whether interannual variation in flower production has changed in response to fluctuations in irradiance, rainfall, temperature, and relative humidity over 18 yrs in an everwet forest in Ecuador. Analyses of 184 plant species showed that flower production declined as nighttime temperature and relative humidity increased, suggesting that warmer nights and greater atmospheric water saturation negatively impacted reproduction. Species varied in their flowering responses to climatic variables but this variation was not explained by life form or phylogeny. Our results shed light on how plant communities will respond to climatic changes in this everwet region, in which the impacts of these changes have been poorly studied compared with more seasonal Neotropical areas.


Assuntos
Árvores , Clima Tropical , Árvores/fisiologia , Reprodutibilidade dos Testes , Florestas , Plantas , Mudança Climática , Flores/fisiologia
14.
PeerJ ; 11: e16525, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38050611

RESUMO

Background: Southeast Asia has experienced widespread deforestation and change in land use. Consequently, many reforestation projects have been initiated in this region. However, it is imperative to carefully choose the tree species for planting, especially in light of the increasing climate variability and the potential alteration of plantation on the watershed water balance. Thus, the information regarding water-use characteristics of various tree species and sizes is critical in the tree species selection for reforestation. Methods: We estimated tree water use (T) of dominant species including Syzygium antisepticum and Adinandra integerrima, hereafter Sa and Ai, respectively, in a secondary tropical forest in Khao Yai National Park, Thailand, using sap flow data, and compared T between species and size classes. Additionally, we evaluated the responses of T of both species in each size class to environmental factors including soil moisture and vapor pressure deficit (VPD). Results: Results showed consistently higher T in Sa compared to Ai across ranges of VPD and soil moisture. Under low soil moisture, T of Sa responded to VPD, following a saturating exponential pattern while Ai maintained T across different VPD levels, irrespective of tree size. No responses of T to VPD were observed in either species when soil water was moderate. When soil moisture was high, T of both species significantly increased and saturated at high VPD, albeit the responses were less sensitive in large trees. Our results imply that Ai may be suitable for reforestation in water-limited areas where droughts frequently occur to minimize reforestation impact on water availability to downstream ecosystems. In contrast, Sa should be planted in regions with abundant and reliable water resources. However, a mixed species plantation should be generally considered to increase forest resilience to increasing climate variation.


Assuntos
Ecossistema , Syzygium , Conservação dos Recursos Naturais , Tailândia , Parques Recreativos , Florestas , Árvores/fisiologia , Solo , Água
15.
Yeast ; 40(11): 511-539, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37921426

RESUMO

Tropical rainforests and related biomes are found in Asia, Australia, Africa, Central and South America, Mexico, and many Pacific Islands. These biomes encompass less than 20% of Earth's terrestrial area, may contain about 50% of the planet's biodiversity, and are endangered regions vulnerable to deforestation. Tropical rainforests have a great diversity of substrates that can be colonized by yeasts. These unicellular fungi contribute to the recycling of organic matter, may serve as a food source for other organisms, or have ecological interactions that benefit or harm plants, animals, and other fungi. In this review, we summarize the most important studies of yeast biodiversity carried out in these biomes, as well as new data, and discuss the ecology of yeast genera frequently isolated from tropical forests and the potential of these microorganisms as a source of bioinnovation. We show that tropical forest biomes represent a tremendous source of new yeast species. Although many studies, most using culture-dependent methods, have already been carried out in Central America, South America, and Asia, the tropical forest biomes of Africa and Australasia remain an underexplored source of novel yeasts. We hope that this review will encourage new researchers to study yeasts in unexplored tropical forest habitats.


Assuntos
Florestas , Clima Tropical , Animais , Biodiversidade , Ecossistema , Plantas
16.
R Soc Open Sci ; 10(11): 231186, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38026043

RESUMO

Deriving gross & net primary productivity (GPP & NPP) and carbon turnover time of forests from remote sensing remains challenging. This study presents a novel approach to estimate forest productivity by combining radar remote sensing measurements, machine learning and an individual-based forest model. In this study, we analyse the role of different spatial resolutions on predictions in the context of the Radar BIOMASS mission (by ESA). In our analysis, we use the forest gap model FORMIND in combination with a boosted regression tree (BRT) to explore how spatial biomass distributions can be used to predict GPP, NPP and carbon turnover time (τ) at different resolutions. We simulate different spatial biomass resolutions (4 ha, 1 ha and 0.04 ha) in combination with different vertical resolutions (20, 10 and 2 m). Additionally, we analysed the robustness of this approach and applied it to disturbed and mature forests. Disturbed forests have a strong influence on the predictions which leads to high correlations (R2 > 0.8) at the spatial scale of 4 ha and 1 ha. Increased vertical resolution leads generally to better predictions for productivity (GPP & NPP). Increasing spatial resolution leads to better predictions for mature forests and lower correlations for disturbed forests. Our results emphasize the value of the forthcoming BIOMASS satellite mission and highlight the potential of deriving estimates for forest productivity from information on forest structure. If applied to more and larger areas, the approach might ultimately contribute to a better understanding of forest ecosystems.

17.
Yeast ; 40(11): 540-549, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37818980

RESUMO

Five yeast strains isolated from tree bark and rotten wood collected in central and southwestern China, together with four Brazilian strains (three from soil and rotting wood collected in an Amazonian rainforest biome and one from Bromeliad collected in Alagoas state) and one Costa Rican strain isolated from a flower beetle, represent a new species closely related with Yueomyces sinensis in Saccharomycetaceae, as revealed by the 26S ribosomal RNA gene D1/D2 domain and the internal transcribed spacer region sequence analysis. The name Yueomyces silvicola sp. nov. is proposed for this new species with the holotype China General Microbiological Culture Collection Center 2.6469 (= Japan Collection of Microorganisms 34885). The new species exhibits a whole-genome average nucleotide identity value of 77.8% with Y. sinensis. The two Yueomyces species shared unique physiological characteristics of being unable to utilize ammonium and the majority of the amino acids, including glutamate and glutamine, as sole nitrogen sources. Among the 20 amino acids tested, only leucine and tyrosine can be utilized by the Yueomyces species. Genome sequence comparison showed that GAT1, which encodes a GATA family protein participating in transcriptional activation of nitrogen-catabolic genes in Saccharomyces cerevisiae, is absent in the Yueomyces species. However, the failure of the Yueomyces species to utilize ammonium, glutamate, and glutamine, which are generally preferred nitrogen sources for microorganisms, implies that more complicated alterations in the central nitrogen metabolism pathway might occur in the genus Yueomyces.


Assuntos
Compostos de Amônio , Saccharomycetales , Saccharomyces cerevisiae/genética , Glutamina/genética , Ácido Glutâmico/genética , Filogenia , DNA Espaçador Ribossômico/genética , Análise de Sequência de DNA , Saccharomycetales/genética , Aminoácidos/genética , DNA Fúngico/genética
18.
Ecology ; 104(11): e4163, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37679881

RESUMO

Determining population demographic rates is fundamental to understanding differences in species' life-history strategies and their capacity to coexist. Calculating demographic rates, however, is challenging and requires long-term, large-scale censuses. Body size may serve as a simple predictor of demographic rate; can it act as a proxy for demographic rate when those data are unavailable? We tested the hypothesis that maximum body size predicts species' demographic rate using repeated censuses of the 77 most common liana species on the Barro Colorado Island, Panama (BCI) 50-ha plot. We found that maximum stem diameter does predict species' population turnover and demography. We also found that lianas on BCI can grow to the enormous diameter of 635 mm, indicating that they can store large amounts of carbon and compete intensely with tropical canopy trees. This study is the first to show that maximum stem diameter can predict plant species' demographic rates and that lianas can attain extremely large diameters. Understanding liana demography is particularly timely because lianas are increasing rapidly in many tropical forests, yet their species-level population dynamics remain chronically understudied. Determining per-species maximum liana diameters in additional forests will enable systematic comparative analyses of liana demography and potential influence across forest types.


Assuntos
Florestas , Clima Tropical , Árvores , Plantas , Dinâmica Populacional
19.
Plants (Basel) ; 12(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37687387

RESUMO

For tropical forests to survive anthropogenic global warming, trees will need to avoid rising temperatures through range shifts and "species migrations" or tolerate the newly emerging conditions through adaptation and/or acclimation. In this literature review, we synthesize the available knowledge to show that although many tropical tree species are shifting their distributions to higher, cooler elevations, the rates of these migrations are too slow to offset ongoing changes in temperatures, especially in lowland tropical rainforests where thermal gradients are shallow or nonexistent. We also show that the rapidity and severity of global warming make it unlikely that tropical tree species can adapt (with some possible exceptions). We argue that the best hope for tropical tree species to avoid becoming "committed to extinction" is individual-level acclimation. Although several new methods are being used to test for acclimation, we unfortunately still do not know if tropical tree species can acclimate, how acclimation abilities vary between species, or what factors may prevent or facilitate acclimation. Until all of these questions are answered, our ability to predict the fate of tropical species and tropical forests-and the many services that they provide to humanity-remains critically impaired.

20.
Glob Chang Biol ; 29(21): 6077-6092, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37698497

RESUMO

Understanding the effects of intensification of Amazon basin hydrological cycling-manifest as increasingly frequent floods and droughts-on water and energy cycles of tropical forests is essential to meeting the challenge of predicting ecosystem responses to climate change, including forest "tipping points". Here, we investigated the impacts of hydrological extremes on forest function using 12+ years of observations (between 2001-2020) of water and energy fluxes from eddy covariance, along with associated ecological dynamics from biometry, at the Tapajós National Forest. Measurements encompass the strong 2015-2016 El Niño drought and La Niña 2008-2009 wet events. We found that the forest responded strongly to El Niño-Southern Oscillation (ENSO): Drought reduced water availability for evapotranspiration (ET) leading to large increases in sensible heat fluxes (H). Partitioning ET by an approach that assumes transpiration (T) is proportional to photosynthesis, we found that water stress-induced reductions in canopy conductance (Gs ) drove T declines partly compensated by higher evaporation (E). By contrast, the abnormally wet La Niña period gave higher T and lower E, with little change in seasonal ET. Both El Niño-Southern Oscillation (ENSO) events resulted in changes in forest structure, manifested as lower wet-season leaf area index. However, only during El Niño 2015-2016, we observed a breakdown in the strong meteorological control of transpiration fluxes (via energy availability and atmospheric demand) because of slowing vegetation functions (via shutdown of Gs and significant leaf shedding). Drought-reduced T and Gs , higher H and E, amplified by feedbacks with higher temperatures and vapor pressure deficits, signaled that forest function had crossed a threshold, from which it recovered slowly, with delay, post-drought. Identifying such tipping point onsets (beyond which future irreversible processes may occur) at local scale is crucial for predicting basin-scale threshold-crossing changes in forest energy and water cycling, leading to slow-down in forest function, potentially resulting in Amazon forests shifting into alternate degraded states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...